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Abstract

The last twenty or so years have witnessed a dramatic increase in the use of computa-
tionalmethods for inferring linguistic phylogenies.Although the results of this research
have been controversial, the methods themselves are an undeniable boon for histori-
cal and Indo-European linguistics, if for no other reason than that they allow the field
to pursue questions that were previously intractable. After a review of the advantages
and disadvantages of computational phylogenetic methods, I introduce the following
methods of phylogenetic inference in R: maximum parsimony; distance-based meth-
ods (UPGMA and neighbor joining); and maximum likelihood estimation. I discuss
the strengths and weaknesses of each of these methods and in addition explicate var-
ious measures associated with phylogenetic estimation, including homoplasy indices
and bootstrapping. Phylogenetic inference is carried out on the Indo-European dataset
compiled by Don Ringe and Ann Taylor, which includes phonological, morphological,
and lexical characters.

Keywords

phylogenetics – computational methods – parsimony – UPGMA – neighbor joining –
maximum likelihood – homoplasy – bootstrapping

1 Introduction

Phylogenetic treesmodel linguistic descent.More specifically, they are hypoth-
eses about the order of lineage-splitting events from an often unobservable
common ancestor to a set of observable descendants (Bowern & Koch 2004:
8–9, Pagel 2017: 152). The phylogeny of the Indo-European languages is a mat-
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ter of long-standing debate (for a recent overview, see Ringe 2017). Widmer
(2018: 374)writes that “Auch inder Indogermanistik gibt es keinenKonsens,wie
die Topologie des Stammbaums der indogermanischen Sprachen im Einzel-
nen aussieht.”1 The members of late clades are clear (that is, we are in no
doubt about which languages belong to, e.g., the Celtic clade), but the order in
which early clades formed has evaded consensus—with the notable exception
of Anatolian, which is widely believed to be a sister to Proto-Nuclear-Indo-
European:

figure 1 Nuclear IE star phylogeny

1 It has of course long been debated whether tree graphs are the best way to represent lin-
guistic history (Schmidt 1872, Schuchardt 1900, and more recently Enfield 2014: 1–8). I take
up the question of the amount of phylogenetic structure in the Ringe-Taylor dataset in sec-
tion 5.7 below. My focus on phylogenetic trees here should not be interpreted as support for
the view that the history of the archaic Indo-European languages is best modeled with trees
as opposed to networks (on which see, e.g., McMahon & McMahon 2005: 139–75, Nichols &
Warnow 2008: 762–64, Huson, Rupp, & Scornavacca 2010, Morrison 2011, François 2015, Agee
2018). I do, however, subscribe to the view of Ringe (2017: 65) that “the tree model is always
the better scientific hypothesis for any specific case, unless and until it becomes completely
untenable.” See also the recent defense of phylogenetic trees by Jacques & List (2018). There
are of course cases where linguistic history is more adequately modeled with a network than
a tree. Linguistic histories such as these can also be modeled computationally. For an exam-
ple of a phylogenetic network analysis of the Indo-European languages, see Boc, Di Sciullo, &
Makarenkov (2010). Schliep (2018a) provides an introduction to network analysis in phang-
orn.
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One of the major questions of Indo-European linguistics is the order in
which clades formed within Nuclear-Indo-European.
In the last twenty or so years, the methods of phylogenetic estimation have

changed dramatically. Jäger (2015: 12752) goes so far as to declare: “Computa-
tional phylogenetics is in the process of revolutionizing historical linguistics.”2
In fact, the situation is more complex, and Jäger’s statement premature.
On the one hand, it is true that computational phylogenetics has expanded

the toolkit of historical linguistics. At the same time, the first wave of research
in computational linguistic phylogenetics has engendered extensive contro-
versy (see, e.g., Pereltsvaig & Lewis 2015 along with the reviews of Bowern 2017
andVerkerk 2017). It is no surprise then that skepticism towards computational
linguistic phylogenetics runs high in certain circles (see, e.g., Heggarty 2006,
Nichols &Warnow 2008: 760).
Amore accurate assessment of the current status of computational phyloge-

netics is that it offers an enormous amount of potential. This potential does not
necessarily lie in the ability to overturn long-standing conclusions of the field.
Rather, these new methods enable Indo-Europeanists to investigate aspects of
language change that were previously intractable (such as estimating branch
lengths, rates of character change, and rates of diversification).
It is essential to understand both the advantages and disadvantages of the

various computational phylogenetic methods (cf. Bowern 2018). Although it is
possible to answer questions with computational methods that are otherwise
intractable, computational methods are not in and of themselves “superior” to
traditional methods. Reliable results can only come from the use of compu-
tational methods in concert with traditional analysis. Furthermore, although
computational linguistic phylogenetics will undoubtedly yield exciting results,
this success will not come at the expense of traditional comparative linguistic
research, since the relationship between these two approaches is one of mutual
symbiosis.
The goal of this article is to enable historical linguists who have no experi-

ence with computational methods to estimate phylogenies with R and RStu-
dio (R Core Team 2019).3 Although the focus of this tutorial is decidedly on

2 Bowern (2018: 282) notes that the term computational (linguistic) phylogenetics is used in
different senses in the literature. It is possible that Jäger in the quotation above is referring
specifically to phylogenetic estimation with Bayesian-MCMC methods. I use computational
(linguistic) phylogenetics to refer to methods of phylogenetic inference based on at least one
of the following: an optimality criterion, an algorithm, or a stochastic trait model.

3 For those new to programming or R, an introductory course may prove helpful. Such courses
can be found online at no cost, such as that offered by Datacamp (https://www.datacamp
.com/courses/free‑introduction‑to‑r).
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basic knowledge, I provide a substantial introduction to each method (maxi-
mumparsimony,UPGMA,NJ, andmaximumlikelihood).4The recent overview
papers by Nichols &Warnow (2008), Dunn (2015), Bowern (2018), and Garrett
(2018)makeexcellent companionpieces to thepractical orientationof this arti-
cle.
The remainder of the paper is organized as follows. Section 2 discusses the

advantages and disadvantages of computational estimation of linguistic phy-
logenies. Section 3 introduces R and RStudio, the software that we will use for
phylogenetic analysis. Building on this, section 4 introduces the dataset and
guides the reader through the process of reading data intoR. Sections 5 through
8 form the core of the article. These sections present parsimony methods,
distance-based methods, and maximum likelihood methods of phylogenetic
inference. Valedictory remarks bring the paper to a close in section 9.
Before discussing the advantages and disadvantages of computational lin-

guistic phylogenetics, I need to say a word about the descriptive terms used
throughout this paper. I generally prefer the terms current in evolutionary
biology to those used in historical linguistics (a practice shared by Lass 1997).
The former offers a much richer conceptual vocabulary for phylogenetic anal-
ysis than historical linguistics and I see no reason to pass on this bounty.5
Following Ewens & Grant (2005: 497), I avoid the term (phylogenetic) recon-
struction in favor of (phylogenetic) estimation or inference, since reconstruction
suggests that the process of inferring past linguistic states is free of uncertainty,
which is simply not the case. Claims about linguistic prehistory can rarely (if
ever) bemade with certainty. Concerning the phylogeny of the Indo-European
languages, none of the trees in the literature (or presented below) is the true
tree (cf. Garrett 2006: 43). The true tree is currently unknowable, because
it is unclear how many branches or languages of Indo-European have van-
ished from the historical record. When it comes to phylogenies and ances-

4 Bayesian-MCMC methods of phylogenetic inference are not covered in this tutorial. On
account of the computational power these methods demand, R is not a practical option.
A number of software options are available for Bayesian phylogenetics, including BEAST 2
(Drummond & Bouckaert 2015), RevBayes (Höhna et al. 2016), BEAST 2.5 (Bouckaert et al.
2019), or BEASTLing (Maurits et al. 2017).

5 Introductions to phylogenetics include Wenzel 2002, Felsenstein 2004, Wiley & Lieberman
2011, Baum & Smith 2013, Hamilton 2013, and Hall 2018. The nature of the data from which
Indo-Europeanists draw phylogenetic inferences is not unlike that of fossil data used in
palaeontology, so it is particularly instructive to read the literature in palaeontology phylo-
genetics, e.g., Wiens 2000 and Mounce 2013. For more on the mathematics of phylogenetic
analysis, see, e.g., Durbin et al. 1998, Semple & Steel 2003, Ewens &Grant 2005, Gascuel 2007,
Sokal & Rohlf 1994, Yang 2014, and Steel 2016.
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tral states, our goal is the best approximation of the true tree and the true state
given the extant data.6

2 The advantages and disadvantages of computational methods

The dataset introduced below contains characters from 24 taxa (i.e., languages,
or tips of the phylgenetic tree). The number of possible unrooted trees for
this dataset is 563,862,029,680,583,512,791,449,600.7 The number of possible
rooted trees is 25,373,791,335,626,255,807,872,499,712 (Felsenstein 1978a, Felsen-
stein 2004: 19–36, Baum& Smith 2013: 187–90). In either case, the possible tree
space is overwhelming. Although a specialist knows that wide swaths of this
tree space are incorrect, it is nevertheless beyond human capabilities to assess
which of the many viable candidate trees best fits the data.
It is well known that languages can emit weak or even conflicting phylo-

genetic signals. Phylogenetic algorithms enable us to make principled deci-
sions on how to handle such cases. This is important, because in such cases
researchers can be influenced by phylogenetic analyses that they want to be
true. As Efron & Tibshirani (1993: 1) put it, “we are all too good at picking
out non-existent patterns that happen to suit our purposes.” McMahon &
McMahon (2005: 68–69) and Scarborough (2016: 33) discuss this issue in more
detail.
Computational phylogenetics enables us to explore dimensions of linguis-

tic history that are rarely if ever discussed in the traditional scholarship. The
Indo-European literature has focused almost exclusively on the question of
topology.8 That is of course an important question, but there are other aspects
of the history of the Indo-European languages that should also be pursued. For
example, we know little about how the rates of change amongdifferent compo-
nents of language (phonology, morphology, syntax, and the lexicon) vary over
time (see Nettle 1999a, Nettle 1999b, Clackson 2000).

6 Ancestral state inference (i.e., “linguistic reconstruction”) is possible in R, but lies beyond
the scope of this tutorial. See for instance Paradis (2012: 247–58, 272, 276, 294, 297, 303) and
vignette(“Ancestral”) in phangorn. For more on ancestral state inference in general,
see Nunn (2011: 52–97), Yang (2014: 125–33) and Bowern (2018: 289–91).

7 An unrooted tree is a phylogenetic tree without a defined root. Unrooted trees provide no
information about the temporal sequence of lineage-splitting events. See further Baum &
Smith (2013: 61–64).

8 The topology of a phylogenetic tree is the relative order of its branches. Tree topology typi-
cally tells us how closely related two languages are. See further Baum & Smith (2013: 45–47).
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Computational methods also enable researchers to assess the extent to
which the data provide evidence for a particular clade. This is absolutely cru-
cial to any phylogenetic analysis. In making inferences about events that reach
back severalmillennia in time, we do not deal in certainties.We therefore need
tools that enable us to acknowledge this uncertainty and the limitations of our
data:

The field of phylogenetics should not be seen as an attempt to build trees,
but rather to examine alternative trees and then quantify the extent to
which data support or reject different phylogenetic conclusions.

Baum & Smith (2013: 265), emphasis in original

To this end, I introduce bootstrap analysis in section 6 below.
Finally, computational methods—in particular maximum likelihood esti-

mation and Bayesian inference—enable historical linguists to infer phyloge-
nies based on specific models of linguistic change (known as transition
models; see section 8.3 below). Such models encode assumptions, for
instance, about the probability of change and whether certain directions of
change are more or less likely. With these methods, it thus becomes possible
to incorporate a theory of language change into phylogenetic inference.
For all the advantages of computationalmethods, they are not without their

pitfalls, perhaps the most threatening of which is the tendency to confuse
model sophistication (ormodel precision) withmodel accuracy (cf. Pereltsvaig
& Lewis 2015: 7–10 on scientism). Simply because the sophistication of com-
putational phylogenetic methods outstrips that of traditional methods, one
might come to think that thesemethods (in particular Bayesian inference) will
automatically yield a superior approximation to the true tree. Another con-
cern along similar lines is that computational methods can lead to researcher
absenteeism in as much as it can lead one to think that computational power
can make up for datasets that are either flawed or characterized by conflicting
phylogenetic signals. That is of course impossible. The computationalmethods
presented below are only as good as the data culled for analysis.
Some have argued that the transmission of genes is fundamentally differ-

ent from the transmission of linguistic knowledge (e.g., Andersen 2006, Lewis
& Pereltsvaig 2012, Pereltsvaig & Lewis 2015: 149–56).9 Armed with such a view,

9 It is, however, easy to find both biologists and linguists who emphasize the similarities of
biological evolution and linguistic change, e.g., Darwin (1882: 90), Atkinson & Gray (2005),
Croft (2008), Pagel (2009), Borchsenius, Daval-Markussen, & Bakker (2017), Pagel (2017).
Despite these similarities, it remains unclear whether we should adopt an “evolutionary”

Downloaded from Brill.com09/18/2020 08:51:58PM
via free access



indo-european phylogenetics with r 7

Indo-European Linguistics (2020) 1–71 | 10.1163/22125892-20201000

onemight questionwhether the computationalmethods that have been devel-
oped for the phylogenetic estimation of species are suitable for linguistic data
(see Bowern 2018: 283–84).What unites evolutionary biology and historical lin-
guistics is not so much the phenomena that they investigate, but rather the
nature of the questions that they pursue. Both fields aim to draw inferences
about prehistory from observable data. Provided that the models and underly-
ing assumptions are compatible with linguistic change, there is no reason why
methods developed for the evolution of species should be unsuitable for lin-
guistic history. Pagel (2017: 152) draws attention to the crucial point that both
genetic information and linguistic properties can be represented as digital sys-
tems of inheritance (cf. Bowern 2018: 284). It is true that some methods or
models developed for evolutionary biology will not be applicable to linguis-
tic data, but one cannot conclude from such incompatibility that methods of
computational phylogenetics in general cannot be used on linguistic data.

2.1 Computational phylogenetics and traditional subgrouping
If one accepts the need for computational phylogenetics, the question arises of
what the relationship between computational and traditional methods should
be. Computational linguistic phylogenetics faces the following conundrum.
If the methods produce novel results at odds with traditional subgrouping,
they may be dismissed as incorrect (the most salient example of this is the
debate that has surrounded Gray & Atkinson 2003 and Bouckaert et al. 2012).
If the methods recapitulate the results of traditional analyses, then they may
be deemed otiose. Consequently, one can come away with the impression that
there is no place in the field for computational methods, in asmuch as they are
at best unnecessary and at worst misguided.
First and foremost, computational methods should not be viewed as a re-

placement of traditional subgrouping as based on the comparative method
(Ringe, Warnow, & Taylor 2002: 66, Bowern 2017: 427). Computational meth-
ods should be used in conjunctionwith the traditionalmethods known to yield
reliable results:

[T]raditional subgrouping is logically coherent and methodologically
unobjectionable: in order to subgroup a particular subset of the family’s
languages together, one demands that they exclusively share clear and
linguistically significant innovations which are unusual enough that they

approach to languageof the sort advocatedby, e.g., Schleicher (1863), Lass (1997), Croft (2008),
Rosenbach (2008), or Pagel (2017). See further the papers inHoenigswald&Weiner (1987) and
Eckardt, Jäger, & Veenstra (2008).
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could not reasonably have arisen more than once independently. To put
it in biologist’s terms, one recognises a clade by the presence of unique
synapomorphies, rigorously excluding any traits that might conceivably
be analogous rather than homologous. This is so clearly correct that we
have no intention of even questioning it.10

Ringe, Warnow, & Taylor (2002: 65–66)

There are various ways in which traditional subgrouping and computational
phylogenetics can complement one another. For instance, computational
methods can play a confirmatory role. If computational methods come to the
same answers that the field achieved without the aid of a computer, that is
worth knowing. (It would be worth knowing because it would mean that we
have an algorithm that approximates the method of phylogenetic inference
among historical linguists.) In a similar vein, if some of the phylogenetic anal-
yses are at odds with computational results, that is also important. In addition,
computational methods can be used to guide us out of an impasse. There are
many aspects of the history of the archaic Indo-European languages for which
traditional methods have not yet yielded a consensus answer. As the quotation
fromWidmer above reveals, there is a lot of uncertainty surrounding the topol-
ogy of Indo-European, for instance.
Subgroups are standardly established on the basis of shared innovations.

To identify an innovation one has to be able to identify an ancestral state. In
some cases, this is not a challenge. For instance, given a language with only
oral vowels and nasal consonant codas and a related language with nasal vow-
els but no nasal consonant codas, the nasal vowels of the latter are very likely
the innovation. In other cases, determining the innovation ismore challenging.
The continued uncertainty of whether the augment was present in PIE is one
such example.11
Not only does subgrouping depend on the inference of ancestral states,

but the inference of ancestral states also depends upon subgrouping. When
a cognate lexical item is attested in, say, three taxa then one has to decide
how far back its ancestral lexical item should be projected—that is, whether
to some intermediate interior node or to PIE itself. Phylogeny plays a crucial
role in assessing such questions (for further discussion, see, e.g., Mallory &

10 It is worth noting that Babel et al. (2013) challenge this allegedly unassailable principle
(see further Lass 1997: 143–59).

11 The augment is a morpheme prefixed to certain finite verbal forms. For its distribution in
archaic Indo-European, see example (1) in section 4 below.
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Adams 2006: 106–10, Olander 2018). The upshot is a chicken-and-egg scenario
in which subgrouping and ancestral-state inference can be mutually depen-
dent endeavors.

3 Software

R is a statistical programming language built on the S language (Wickham
2014). R offers many advantages, foremost of which is that it is free, gen-
eral purpose software. It boasts over 4,000 libraries, which include a wide
array of packages for phylogenetic analysis. The analyses and tree graphs pre-
sented below were all carried out in R version 3.5.3.12 R can be downloaded at
https://www.r‑project.org.
Once R has been installed, one should also download the Integrated Devel-

opment Environment (IDE) RStudio, which is available at https://www.rstudio
.com.13 I urge the reader to use RStudio (as opposed to R) for carrying out the
phylogenetic analyses below.
Once you have R and RStudio installed, you will need to install packages for

phylogenetic analysis. The two most important packages for our purposes are
ape (Paradis 2012) and phangorn (Schliep 2011, Schliep 2018b). Packages can
be downloaded to your hard drive with the following command (the ‘#’ symbol
is used for comments in R; entering them in the R console in RStudio will have
no effect):

Typically you will download packages from CRAN, The Comprehensive R Ar-
chive Network (https://cran.rstudio.com). As explained below, however, pack-
ages can be downloaded from other sources, such as BioConductor or GitHub.
Once the packages have been downloaded, they need to be loaded into the

current session, which can be done with the library() function:

12 It is worth noting that R is not the only software with which one can infer phyloge-
nies. Among programming languages, there is also Python. Johann-Mattis List has in fact
developed a range of Python software for historical linguistics including phylogenetic
analysis (e.g., List 2017). His website contains a wealth of information and resources:
http://lingulist.de. Egan (2006: 81) and Felsenstein (n.d.) also list other software for phylo-
genetic analysis.

13 For introductions to using R for linguistic analysis, see Gries (2013), Levshina (2015), and
Gries (2017). Grolemund & Wickham (2017) is an introduction to R based on a suite of
packages known as the Tidyverse (https://www.tidyverse.org).

Downloaded from Brill.com09/18/2020 08:51:58PM
via free access

https://www.r-project.org
https://www.rstudio.com
https://www.rstudio.com
https://cran.rstudio.com
http://lingulist.de
https://www.tidyverse.org


10 goldstein

10.1163/22125892-20201000 | Indo-European Linguistics (2020) 1–71

Once the packages are loaded into your working environment, their functions
will be at your disposal.
At this point, youmay want to create a new script file in RStudio rather than

work directly in the R console. To do this, open RStudio and go to File > New
File > R Script in the menu bar. A new script file will then appear above the
console pane. You should put the commands for loading the above packages
in the preamble of the document. All of the code below for phylogenetic infer-
ence and visualization of trees is available along with the datasets used in this
tutorial at http://doi.org/10.5281/zenodo.3417299.
For plotting trees, one can use the packages ggdendro and ggtree (Yu

et al. 2017), which extend the ggplot2 package. The trees below were pro-
duced with version ggtree version 1.14.6 (Yu et al. 2017). In contrast to the
other packages described in this tutorial, ggtree is not available on CRAN. It
is available from BioConductor, which can be downloaded with the following
code:

Once BiocManager is loaded, ggtree is installed and loaded as follows:

4 The dataset

The phylogenetic trees presented in the subsequent sections are based on
the phonological (Ringe & Taylor 2007b), morphological (Ringe & Taylor
2007a), and lexical characters (Ringe & Taylor 2002, Ringe, Warnow, &
Taylor 2012) in the screened dataset created by Don Ringe and Ann Taylor
(Nakhleh, Ringe, & Warnow 2005: 178; for a critical assessment of the data-
set, see Drinka 2013: 383–85). It contains twenty-two phonological characters;
twelvemorphological ones; and 259 lexical characters, for a total of 293 charac-
ters.
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The dataset uses multistate character values. The augment, which is char-
acter M2 in Ringe & Taylor (2007a), will serve as an illustrative example (for
further examples, see Nakhleh, Ringe, &Warnow 2005: 410–18):

(1) Multi-state character encoding for the augment
Hittite 2 Avestan 1 Luvian 10 Gothic 15
Armenian 1 Old Church Slavic 5 Lycian 11 Old Norse 16
Greek 1 Lithuanian 6 Tocharian A 12 Old High German 17
Albanian 3 Old English 7 Old Persian 1 Welsh 18
Tocharian B 4 Old Irish 8 Old Prussian 13 Oscan 19
Vedic 1 Latin 9 Latvian 14 Umbrian 20

The value 1 denotes the presence of the augment. Character values from 2
onwards denote its absence.14
At the risk of stating a truism, I want to stress the critical importance of

character selection and encoding (cf. Nakhleh et al. 2005: 172, Geisler & List
2010).15 This is by far the most important component of phylogenetic analy-
sis. No matter the sophistication of the method of phylogenetic inference, if
the linguistic analysis of the data is flawed (e.g., incorrect coding of cognates
or poorly selected characters), the estimated phylogeny will also be flawed (cf.
Johnson 2008: 250, Chang et al. 2015: 221). In an era of ever increasing tech-
nological sophistication, it is more important than ever that we be able to
distinguish accuracy and precision, two phenomena that, though often mis-
taken for one another, are in fact worlds apart.16 Simply because a method
is more sophisticated or yields more precise answers (e.g., an estimated time
depth for Proto-Indo-European) does not mean that such answers automati-
cally lay greater claim to the truth.

14 According to Ringe & Taylor (2007a: 3), the absence of the augment is not coded with a
unique value because that would imply a historically shared change.

15 For discussion of various aspects of characters and character selection, see Taylor,
Warnow, & Ringe (2000), Kessler (2001), Ringe, Warnow, & Taylor (2002: 71–73), Wich-
mann & Saunders (2007), Nichols & Warnow (2008: 764–66), Chang et al. (2015: 200–
04), Pereltsvaig & Lewis (2015: 218–28), Scarborough (2016: 186–88), Bowern (2018: 287–
88).

16 In science, engineering, and statistics, there are technical definitions of accuracy and pre-
cision. Accuracy is generally defined as how close the measurement of a quantity is to its
true value. Precision, on the other hand, refers to variability in measurement.
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4.1 Reading data into R
The Indo-European character datasets curated by Don Ringe and Ann Taylor
are available on Luay Nakleh’s website at https://www.cs.rice.edu/~nakhleh/
CPHL/.17 We read the data into R from the web as follows:

The Indo-European character data is now the R object screened.df (the
object bears the extension .df because it is a data structure known as a
dataframe). The argument stringsAsFactors = FALSE enables the values
in the table to be treated as character strings and fill = NA is needed because
the rows do not all have the same number of elements. This argument inserts
NA in cells of the table to make the rows equal in length.
A few things need to be changed before we can analyze the data (character

M11 is removed per Ringe & Taylor 2007a: 9–10):

17 Other IE datasets are available from IELex (http://ielex.mpi.nl) and in the supplementary
files of Chang et al. (2015) (https://muse.jhu.edu/article/576999).
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For several of the phylogenetic analyses below, I use version 2.4 of the pack-
age phangorn (Schliep 2018b), which requires that the data be in the phyDat
structure. The following code transforms the above dataframe into a phyDat
object (see further Schliep 2017):

The object screened.phydat will serve as the input to most of the phyloge-
netic analyses below. To see what the object contains just type its name into
the console:

## 24 sequences with 293 character and 282 different site patterns.
## The states are 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 32

Finally, most of the methods below infer unrooted trees. To establish the
branching order among clades, we need to select an outgroup. Since Anatolian
is now agreed bymany to have been the first clade to branch off (e.g., Melchert
& Oettinger 2009: 53–54, Melchert forthcoming), the Anatolian languages in
the dataset (that is, Hittite, Lycian, and Luvian) will serve as the outgroup. It is
created as follows:

Below I use the object anatolian in the specification of the outgroup.

5 Parsimonymethods

We begin with parsimony methods (Fitch 1971, Stewart 1993, Swofford et al.
1996: 415–26, Kitching et al. 1998, Felsenstein 2004: 1–146, Albert 2005, Swof-
ford & Sullivan 2009, Nunn 2011: 30–33, Baum & Smith 2013: 173–215, Yang
2014: 95–100, Warnow 2018: 63–69), which resemble traditional methods of
subgrouping. Maximum parsimony methods are based on an optimality cri-
terion: the tree that requires fewest changes for a given dataset is optimal. (The
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total number of steps for a dataset on a given tree is known as the length of
the tree.) More specifically, the optimal tree minimizes the amount of homo-
plasy.18 Underlying thismethod is the assumption that language change is slow
(in the sense that the characters have only undergone a small number of tran-
sitions) and that we should therefore prefer phylogenies that minimize the
number of changes posited for the data.19
There are several algorithms for calculating the parsimony score of a tree for

a given dataset, the most prominent of which are Fitch, Sankoff, and Dollo. In
Fitch parsimony, a change between any two states is possible, and all changes
count for just one step (Fitch 1971, Felsenstein 2004: 11–13). Sankoff parsimony
also allows a change between any two states (Sankoff 1975, Felsenstein 2004:
13–16). The crucial difference is that Sankoff parsimony assumes a cost matrix
for transititions between any two given states.20
Another form of parsimony that is relevant to linguistic phylogenetics is

Dollo parsimony. According to this model, a trait can be acquired once, and
if lost it can never be regained (Farris 1977). This form of parsimony is of inter-
est to historical linguistics because it has a correlate in the domain of sound
change, namely Garde’s Principle (Garde 1961), which states that phono-
logical mergers cannot be undone (Hoenigswald 1960: 75–82, 87–98). So once
two phonemes merge, their ancestral distribution cannot be recovered. (For a
discussion of this phenomenon and apparent exceptions, see Silverman 2012:
62–77.)
For up to about twenty taxa, the branch and bound algorithm (introduced in

section 5.1 below) is guaranteed to find the most parismonious tree. For larger
datasets, we need recourse to a heuristic search algorithm, which I intro-
duce in section 5.5 below. In contrast to the branch and bound methods, these
search algorithms are not guaranteed to find the most parsimonious tree.

18 Homoplasy refers to situations inwhich a character state arisesmore thanonceona tree.
This includes both parallel independent innovations and character state-reversals (other-
wise known as backmutation). See further Baum& Smith (2013: 93–95) and section 5.6
below.

19 For maximum parsimony analyses of archaic Indo-European languages, see Rexová,
Frynta, & Zrzavý (2003), Skelton (2015), and DeLisi (2018). Outside of Indo-European, see
Holden (2002) on Bantu and Baxter (2006) on Chinese.

20 Such a cost matrix enabled biologists to assign different weights to transitions (a change
between two purines or two pyrimidines) and transversions (a change between a purine
and a pyrimidine or between a pyrimidine and a purine). The idea of assigning weights
to linguistic changes is appealing (Bowern & Koch 2004: 4, Nakhleh et al. 2005: 180, 188–
89), but it is unclear how values for a cost matrix should be assigned. For an example of
analyses using weighted characters, see Nakhleh et al. (2005) and Skelton (2015).
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5.1 Branch and bound
The branch and bound algorithm is guaranteed to find the most parsimonious
tree(s) (Felsenstein 2004: 38). The algorithm does not, however, calculate the
length of all possible trees, but rather exploits the following insight to exclude
regions of unparsimonious trees (see further Felsenstein 2004: 60–64): adding
taxa to a tree will never decrease its length (Baum & Smith 2013: 189, Huson,
Rupp, & Scornavacca 2010: 35). That is, whatever homoplasy exists on a tree
will never be reduced by adding taxa to the tree. So if removing taxa from a
tree results in a parsimony score higher than that of the current bound (i.e.,
the current best tree), then all trees derived from this reduced tree will be less
parsimonious (Baum&Smith 2013: 189). Thus the branch and bound algorithm
reduces the tree space by eliminating swaths that cannot contain an optimal
tree and thereby drastically reduces the number of trees for which a parsimony
score is calculated.
The main disadvantage of this technique is that it is very slow and can only

really be used for datasets that contain atmost ten to twenty taxa. The package
phangorn contains the function bab(), which will find all most parsimonious
trees from a given dataset (depending on your computer, youmay have to wait
up to ten minutes to get the command prompt back):

With the bab() function, one can specify a start tree (i.e., a tree used to initiate
the search) by adding tree = inside the parentheses. (Options of a function
such as this one are known as arguments.) Here I opted not to do that by
setting the value of this argument to NULL. Doing so causes a ratchet search
(introduced below in section 5.5) to be performed to find a start tree.
The output of the bab() function is an object of the class multiPhylo (see

further Paradis 2012: 55–56). For our dataset, the branch and bound search
returns fifteen maximally parsimonious trees. By calling the function parsi-
mony() from the phangorn package (see further Paradis 2012: 165–66), we can
confirm that the parsimony scores (or p-scores) are identical:21

21 With the argument method, one can specify “fitch” or “sankoff” parsimony when
calling the parsimony() function. Dollo parsimony can be calculated with the function
Rdollop() in the package RPHylip (Revell & Chamberlain 2015).
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There are fifteen p-scores, one for each tree.

5.1.1 Rooting the trees and adding branch lengths
The branch and bound algoritm returns unrooted trees, which we can confirm
with the function is.rooted():

To root the trees we call the function root():

This code sets Anatolian as the outgroup of each of the trees from the branch
and bound algorithm. To check that the trees are in fact rooted, we again call
the function is.rooted():

The trees produced by the branch and bound algorithm also lack branch
lengths.Toaddbranch lengths to the trees,we callacctran() fromthephang-
orn package:

This function estimates branch lengths via a method known as acceler-
ated transformation. Homoplastic characters can lead to multiple max-
imally parsimonious trees. The central idea of accelerated transformation is
to assign character-state changes as soon as possible on the tree, which maxi-
mizes character-state reversals (for more on the calculation of branch length,
see Swofford &Maddison 1987, Felsenstein 2004: 70–72).
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The following code returns the length of each branch on the first tree:

The branch lengths represent the number of inferred changes. By changing the
index in the double brackets, one can obtain the branch lengths for other trees.
Summing the length of each branch, we obtain the p-score observed above:

5.2 Visualization
Phylogenetic trees can be plotted with the plot() function. Here for instance
is the first of the branch and bound trees:

figure 2 Branch and bound tree 1
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The outputwill appear in the plot pane in the lower right corner of the RStu-
dio console. By clicking the Export tab, one can save it as a file.22
Trees two and six of the the branch and bound trees are plotted below.To the

right of each tree I include a heatmap of the phonological and morphological
characters in the dataset so that one can get a sense of the underlying data. Tree
two is paired with the phonological characters from the dataset, while tree six
is pairedwith themorphological. In the interest of enhancing the visualization,
the originalmultistate characterswere transformed into binary characters. The
binary dataset and the code used for the transformation are available at http://
doi.org/10.5281/zenodo.3417299.

figure 3 Branch and bound tree 2 with binary phonological characters

22 If one wants to plot a tree in a different program, such as FigTree (http://tree.bio.ed.ac.uk/
software/figtree/), one can export it with the write.tree() function. For the arguments
of this function, type ?write.tree into the console. The tree will be saved in Newick
format in the working directory. (The Newick format is a standard way of representing
trees.)
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In the first three rows of the heatmap, the Anatolian languages show an
almost uniform block of 0 values. We see in characters P4 through P7 some of
the innovations (i.e., 1 values) that define Proto-Nuclear-Indo-European. (For
a description of the change represented by each column, see Ringe & Taylor
2007b and Ringe & Taylor 2007a.)

figure 4 Branch and bound tree 6 with binary morphological characters

I have highlighted a portion of the Anatolian clade andAlbanian because these
are the loci of variation among the fifteen branch and bound trees. In the next
section, I explore these fifteen branch and bound trees further with consensus
and maximum clade credibility trees.
Given that the true Indo-European tree is not known, evaluation of phyloge-

netic methods is challenging (Nichols &Warnow 2008: 760). Since there is no
debate among Indo-Europeanists about the members of clades such as Slavic,
Celtic, and Germanic, below I use correct assignment of languages to recog-
nized clades as the baseline evaluation measure.
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5.3 Maximum clade credibility tree
Wecan summarize the set of branch and bound treeswith amaximum clade
credibility tree. The function maxCladeCred() evaluates each tree ac-
cording to the frequency of each clade within the set of trees.

Trees with clades that are more frequent will have higher scores. The tree with
the highest score is then selected as the maximum clade credibility tree:

figure 5 Maximum clade credibility tree from branch and bound search

5.4 Consensus trees
Another way to summarize a set of trees is with a consensus tree (Par-
adis 2012: 179–82), which reduces a set of trees to a single tree. There are
two types of consensus trees, strict consensus trees and majority-rule consen-
sus trees. In a strict consensus tree, the clades that are not observed in all
the trees of a set are represented as polytomies, that is, as multifurcating
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branches.23 In a majority-rule consensus tree, the clades not observed in a
majority of trees are represented as polytomous. To create a consensus tree,
use the ape function consensus(). By default, a strict consensus tree is calcu-
lated:

figure 6 Strict consensus tree from branch and bound search

23 A polytomy is a nodewithmore than two descendant branches. It is otherwise known as a
multifurcation. A hard polytomy is a lineage that splits intomultiple descendants
around the same time. A soft polytomy reflects uncertainty about the true topology.
That is, the multifurcation is not necessarily an accurate representation of the past. Most
Indo-Europeanists would presumably characterize the consensus trees above as soft poly-
tomies, since it is unlikely that the non-Anatolian archaic Indo-European languages all
split up more or less simultaneously.
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The length of each branch is now uniform because this particular tree was
not among the branch and bound trees. (In fact, attempting to calculate the
branch lengths of this tree with acctran() will yield an error message that
the tree must be binary.)24 Themultifurcations reveal uncertainty at a number
of points in the tree, in particular with the internal structure of Anatolian and
the order of lineage-splitting events among Albanian, Greco-Armenian, Indo-
Iranian, and the clade comprising Balto-Slavic, Germanic, and Italo-Celtic.
To calculate a majority-rule consensus tree, use the argument p = 0.5:

figure 7 Majority-rule consensus tree from branch and bound search

24 There are ways to add branch lengths to strict consensus trees, but these will not be cov-
ered here. See https://github.com/bomeara/utilitree/.
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This tree contains all of the clades that occur in at least fifty percent of the
branch and bound trees. The branches are all now bifurcating with the excep-
tion of Anatolian.

5.5 Heuristic search
With largedatasets, the size of thepossible tree spacemakes it unfeasible to cal-
culate the p-score of each tree. Various heuristic searches have therefore been
developed. In phangorn these rely on branch-swapping methods. The basic
idea behind suchmethods is to generate a number of trees by rearranging parts
of anoriginal tree and thenmoving to the one that has thebest parsimony score
(see further Huson, Rupp, & Scornavacca 2010: 37–40). This process is iterated
until no improvement in the length of the tree can be found. The reader should
be aware that the heuristic searches below are not guaranteed to find the most
parsimonious tree(s), since there is the possibility that they can get stuck in
local optima (roughly speaking, local optima are regions of the tree space that
are good relative to other areas, but not the best).25
The phangorn package implements a parsimony-based heuristic search

knownas the ratchet.The ratchet search relies onabranch-swapping algorithm
known as tree bisection and reconnection (TBR). I refer the reader
to Nixon (1999) and Felsenstein (2004: 51–52) for the details of the algorithm.
The following code estimates amaximumparsimony treewith a ratchet search
(which returns unrooted trees):

25 One therefore needs to replicate the results of a heuristic search using random starting
points.
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figure 8 Parsimony ratchet tree

The parsimony ratchet is generally considered the most reliable among the
branch-swapping heuristic search methods.
Two other branch-swapping algorithms are implemented in phangorn:

nearest neighbor interchanges (NNI; Felsenstein 2004: 38–41, Huson,
Rupp, & Scornavacca 2010: 38) and subtree pruning and regrafting
(SPR; Felsenstein 2004: 41–44, Huson, Rupp, & Scornavacca 2010: 38–39). To
perform these searches, call the functionoptim.parsimony().With the argu-
ment rearrangements, one specifies “SPR” or “NNI” rearrangements (the
former is the default value). NNI and SPR searches can be used after the par-
simony ratchet to see if any further optimization of the parsimony score is
possible:
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In this case, optimization was unable to find a better tree. The p-score of
the above tree is 3612, which is the same value we obtained above from the
branch and bound search. To confirm that the phylogenies are identical, we
use all.equal.phylo():

5.6 Measuring homoplasy and consistency
There are other measures of tree support besides tree length. Here I introduce
two, the consistency index and the retention index, both of which pro-
vide measures of homoplasy on a tree. homoplasy refers to a situation in
which character states develop more than once on a tree. Two types of situ-
ations result in homoplasy (Baum & Smith 2013: 93). The first is parallel inde-
pendent innovation. Changes that are common (e.g., palatalization of velars
before front vowels) are good candidates for homoplastic characters. The sec-
ond type of situation that can result in homoplasy is so-called “Duke of York”
changes. To draw again on sound change, a trajectory [a] > [o] > [a] is homo-
plastic. In the evolutionary biology literature, this phenomenon is known as
backmutation.
A character is consistent on a given tree if it exhibits the minimum

number of changes (i.e., if it shows no homoplasy). The minimum number of
changes is always the observed number of character states minus one. For a
binary character with values 1 and 0, theminimumnumber of changes is 1 (i.e.,
two observed character states minus one). Any tree that accounts for the dis-
tribution of the character states 1 and 0 with a single change is consistent with
that character. If a tree requires more changes than the minimum, the charac-
ter is homoplastic on that tree.
The consistency index is a measure of the consistency of a tree:

(2) CI = Min(S)
S
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Min(S) is the minimum number of steps required by a tree. As mentioned
above, this is equal to the number of observed character states minus one. S is
the lengthof the tree, that is, the actual numberof steps on the tree.To calculate
the consistency index for a tree, the values of the numerator and denominator
are summed for all characters before division. Values of the consistency index
range from 1 to close to 0. A consistency index of 1 means that all characters are
perfectly consistent on the tree (that is, there is no homoplasy). This situation
arises of course whenMin(S), the minimum number of changes, equals S, the
actual number of changes.
The consistency index is not without its problems (Sanderson & Donoghue

1989, Archie & Felsenstein 1993, Egan 2006: 73). For one, there is a negative
correlation between the consistency index and the number of taxa: the con-
sistency index falls as the number of taxa rises (Sanderson & Donoghue 1989).
This correlation is explained by the fact that as the number of nodes (i.e.,
lineage-splitting events) increases, there aremore opportunities for homoplasy
(Hauser & Boyajian 1997: 97). So with larger datasets, the accuracy of the con-
sistency index is questionable. Second, it is difficult to compare consistency
indices across datasets. Third, autapomorphies (unique innovations) and sym-
plesiomorphies (shared inherited traits) both inflate the consistency index,
although neither of these situations should affect it since neither involves
homoplasy. Finally, the absence of conventions for interpretating consistency
indices means that it is not clear what constitutes a high or low value.
The retention index was intended as an improvement on the consistency

index (Farris 1989, Lipscomb 1998). Unlike the latter, the former can range from
0 to 1. Like the consistency index, the retention index is the ratio of the observed
number of changes and the minimum number of changes, but it is more com-
plex in that it takes into account the maximum number of possible changes.
One can think of it as the proportion of the observed number of synapomor-
phies (i.e., shared innovations) to the maximum possible number of synapo-
morphies (Egan 2006: 73, Klingenberg&Gidaszewski 2010: 250). It is calculated
as follows:

(3) RI = Max(S)−S
Max(S)−Min(S)

Max(S) is the maximum number of steps required by a tree. To calculate the
maximumnumber of steps on the tree,we count thenumber of observed states
for each character. We select the lowest number in each case and then sum up
that value for every character in the dataset.
If the retention index equals one, a character is maximally consistent, i.e.,

Min(S) = S. If the retention index equals zero, a character is maximally homo-
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plastic, i.e.,Max(S) = S. (Thiswouldmean in addition that the character is par-
simony uninformative, i.e., that we cannot use it to make any inferences about
the topology of the tree.)
Here are the consistency and retention indices for the trees optimized with

nearest neighbor interchange:

The values of both indices are high, which reflects the fact that the dataset was
curated precisely to avoid homoplastic characters.
To see which characters specifically lower the consistency and retention

indices, we can use the following code (only the retention index is included
here for the sake of space):

The first two of these are the phonological characters P2 and P3. P2 encodes
full “satǝm” development, according towhichPIE labiovelarsmergewith velars
and “palatals” become affricates or fricatives. P3 refers to the “ruki”-retraction
of *s. The third character is themorphological characterM5,which encodes the
mediopassive primary marker. The remaining characters are lexical and refer
to the following concepts: ‘float2’, ‘head’, ‘ice’, ‘straight’, ‘suck2’, ‘break1’, ‘free’,
‘leave1’, ‘nine’, ‘young2’, and ‘tear’. I refer the reader to the descriptions of the
characters by Ringe and Taylor cited above for further discussion.

5.7 Howmuch phylogenetic structure is in the dataset?
There is an ongoing debate within Indo-European linguistics over whether
the history of the family is in fact best represented by a phylogenetic tree, as
opposed to, say, a network. With methods that assign scores to trees (such as
parsimony and likelihoodmethods, the latter of which are presented in section
8 below), we can investigate the degree to which the data exhibit a hierarchical
(i.e., tree-like) structure by comparing the optimal tree to trees inferred from
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permuted datasets. The permuted datasets contain the same number of traits
as the real dataset and the same of number of trait values, but their order has
been jumbled. For instance the character values 001101 in the original dataset
could become 000111 in one of the permuted datasets. I created 100 permuted
datasets from the original dataset.
For each dataset, I inferred a phylogeny using the parsimony ratchet and

recorded the length of each tree (i.e., the sum of all the branch lengths). I then
compared the lengths of these one hundred trees to that of the tree from the
original dataset. In effect, this is a comparison between the tree inferred from
the real dataset to one hundred trees from random data (otherwise known as a
permutation tail probability test). If the length of the tree inferred from
the real data differs from the lengths of the trees inferred from the randomized
datasets, the data are said to contain more tree-like structure than would be
expected from random data (Baum & Smith 2013: 268).
The following plot reveals that the length of the parsimony ratchet tree from

the original dataset is considerably lower than that of all the trees inferred from
the permuted dataset:

figure 9
Length of the parsimony
ratchet tree compared to the
length of trees inferred from
permuted datasets

The red line represents the length of the tree inferred from the original dataset
(3612) and the black bars the lengths of the trees inferred from the permuted
datasets. The results of the permutation tail probability test do not of course
mean that Indo-European needs to be modeled with a tree. It means that
this specific dataset contains more phylogenetic signal than one would expect
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from random data. Given that most of the phonological characters define
clades (Nakhleh, Ringe, & Warnow 2005: 394), the result is perhaps not sur-
prising. With a different Indo-European dataset, one might obtain different
results.

5.8 Issues
Although parsimony methods are closest in spirit to traditional subgrouping
methods and yield good results, they are not without their pitfalls. For one,
the assumption that the true tree is characterized by the fewest number of
changes may be inappropriate for some data sets (see, e.g., Penzl 1960: 216).
Application of Ockham’s razor to the vicissitudes of history can dupe us into
believing that linguistic history is tidier and more economical than it actually
is (see, e.g., Sober 1988 and Sober 2015 for discussion of themethodological and
philosophical issues of parsimony). In datasets where characters have under-
gone a number of changes with the result that multiple taxa exhibit the same
states, two interrelated problems arise (Swofford et al. 1996: 427, Schulmeister
2004, Bergsten 2005, Baum & Smith 2013: 205–07, Yang 2014: 99–100, Warnow
2018: 161–64). First, maximum parsimony methods underestimate the amount
of change. Second, since the methods are designed to minimize homoplasy,
shared character traitswill be treated as synapomorphies. In otherwords, if two
taxa have independently undergone a lot of change (i.e., have long branches),
maximum parsimony will interpret the changes as shared innovations and
pair them together. Felsenstein (1978b) called attention to this problem in the
context of DNA sequences. He referred to it as long branch attraction,
although the problem also arises in trees with equal branch lengths. Maximum
parsimony is therefore said to be positively misleading (Warnow 2018:
161).We typically expect an estimate to improve withmore data. This is known
as statistical consistency (Warnow 2018: 146). Rather than converge to the true
tree as the amount of data increases, maximum parsimony methods can con-
verge to the wrong tree.
Linguistically, the weaknesses of parsimony methods are especially salient

when it comes to phylogenetic inference from sound change. It is well known
that certain types of sound changes aremore common thanothers (e.g., Garrett
& Johnson 2013: 52). Given enough time, it is likely languages will individually
undergo such sound changes. Such a homoplastic scenario would be inter-
preted by the maximum parsimony algorithms as evidence for shared inno-
vation. We should therefore get the best results from maximum parsimony
methods with datasets characterized by fewer transitions (cf. Baum & Smith
2013: 187). This is one reason why maximum parsimony methods may be of
greater utility for linguistic phylogenetics than for evolutionary biology, since
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linguistic datasets are far more restricted in the time depth of their characters.
At shallower time depths, there is less opportunity for change and long branch
attraction.

6 Measuring clade support

Once our phylogenetic method infers a tree, we need to ask ourselves how
much confidence we should have that the estimated tree represents the true
tree. Node support is a measure of the extent to which the data support the
clades in the phylogeny. The most widely used measure is the nonparametric
bootstrap (Baum & Smith 2013: 273), which was first introduced into phylo-
genetic analysis by Felsenstein (1985) (see further Sanderson 1989, Sanderson
1995, Efron, Halloran, & Holmes 1996, Egan 2006, Huson, Rupp, & Scornavacca
2010: 43–44). The basic idea is to assess the degree to which our sample char-
acter data approximate the true phylogeny. Bootstrap analysis creates other
possible datasets by randomly sampling from the original dataset with replace-
ment (Efron 1979, Efron & Tibshirani 1993, Efron 2003).

6.1 Bootstrapping
The basic procedure is as follows (Durbin et al. 1998: 180). For a dataset with
n characters, randomly sample the dataset n times with replacement. These
datasets are known as pseudoreplicates. Sampling with replacement will
yield pseudoreplicates in which some characters are represented more than
once, while some characters are not represented at all. Below I create 100 boot-
strapped datasets and apply the method under discussion to each. For each
clade inferred from the original dataset, the bootstrap function then tallies the
number of bootstrappeddatasets that contain that clade. Dividing this number
by the total number of bootstrapped datasets yields the confidence value for a
particular clade. In short, we are using the character data itself to infer how
reliable our estimated phylogeny is. It is hard to overestimate the importance
of measuring clade support in Indo-European phylogenetics. It is absolutely
critical that we know how robust our results are.
Bootstrap analysis can be carried outwith theboot.phylo() function from

ape (for more on bootstrap analysis in R, see Paradis 2012: 174–79).26We begin
by setting a seed:

26 Bootstrap analyses can also be carried out with bootstrap.phyDat() and plotBS() in
phangorn.
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By using the set.seed() function, we essentially assign a particular sequence
of random samples an index. This then enables one to replicate the results of
the bootstrap sample. In other words, calling set.seed(233)will ensure that
the same set of pseudoreplicates is generated each time. (The value 233 has
no significance; it is simply the starting point of the pseudo-random number
generator.) For more on random seeds, call ?set.seed.
We then write a function for the phylogenetic analysis of our bootstrapped

samples:

This function calls the parsimony ratchet on the input dataset and will then
root the output with Anatolian as an outgroup. The bootstrap function
boot.phylo() also requires a dataset with taxa (i.e., languages) as rows and
characters as columns. (In the screened.df dataset, the taxa are columns and
the characters are rows.) We transpose the dataframe as follows:

Our transposeddataset andphylogenetic functionwill then serve as arguments
of the function boot.phylo() from the ape package, with which we run the
bootstrap analysis:

The argument B = 100 sets the number of bootstrap replicates at 100, while
trees = TRUE keeps all the trees from the analysis and rooted = TRUE speci-
fies that the trees should be treated as rooted.
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Oncewe have our bootstrap trees we get the scores for each clade as follows:

The function prop.clades() tallies the frequency of the bipartitions in a
given phylogenetic tree (here screened.pratchet.blength) among the
bootstrap trees. This is the ratchet parsimony tree annotated with bootstrap
scores (the thickness of the branches also reflects these scores):

figure 10 Parsimony ratchet tree with bootstrap scores
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The bootstrap scores indicate how many times a set of languages formed
a clade among the total number of trees inferred from the pseudoreplicate
datasets. For instance, the Italic, Celtic, and Germanic languages form a clade
in fifty-nine of the 100 pseudoreplicates. In other words, the data provide only
weak support for such a clade. By contrast, every pseudoreplicate contains a
clade with Latin, Oscan, and Umbrian.
It is critical that one interpret bootstrap scores accurately. First off, a high

bootstrap score does not corroborate the existence of a particular clade (cf.
Nichols & Warnow 2008: 773). Rather, it means that the dataset in question
offers robust support for such a clade. Likewise, a low bootstrap score should
not be interpreted tomean that a particular clade did not exist. It simplymeans
that the data fromwhich the bootstrap trees were inferred do not support such
a clade. Examination of further data could either corroborate or disconfirm the
existence of such a clade (cf. Egan 2006: 80). Ewens & Grant (2005: 525) point
out in addition that if the assumptions of an estimation procedure are at odds
with the true history, then any error in the estimated tree will tend to be shared
with the trees in the pseudoreplicates.
The results in the tree above are sobering and largely recapitulate what has

been known at least since Brugmann (1884: 226), namely that the innovations
that define late diverging clades such as, e.g., Indo-Iranian are clear, but inno-
vations that define earlier diverging clades, such as the ancestor of Germanic,
Celtic, and Italic, are scarce (Garrett 1999: 147). The Tocharian languages and
Albanian are an exception to this trend in the tree above, as their position is
more robust. These languages aside, the takeaway message from the bootstrap
scores in the above phylogeny is that the evidence for the post-Tocharian clades
in the dataset is weak and that we need to find data with a more robust phylo-
genetic signal.
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If one removes the homoplastic characters mentioned in section 5.6 above,
the bootstrap scores improve somewhat:

figure 11 Parsimony ratchet tree with bootstrap scores (pruned data set)

The data now provide better support for a clade containing Balto-Slavic, Ger-
manic, Celtic, and Italic.
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We can calculate consensus and maximum clade credibility trees for the
bootstrap trees, just as we did for the branch and bound trees in sections 5.3
and 5.4 above:

figure 12 Strict consensus tree

The multifurcation after the departure of the Anatolian languages reflects the
fact that there is no consensus among the bootstrap trees concerning the early
topology of Proto-Nuclear-Indo-European.
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To calculate a majority-rule consensus tree, use the argument p = 0.5.

figure 13 Majority-rule consensus tree

It is interesting that Proto-Tocharian is now a sister to the ancestor of the
remaining archaic Indo-European languages, since this was not the case in the
strict consensus tree.
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The maximum clade credibility tree looks as follows:

figure 14 Maximum clade credibility tree

In contrast to the two consensus trees above, the maximum clade credibility
tree is one of the trees from the bootstrapped pseudoreplicates.

6.2 Issues
The use of the bootstrap in phylogenetic analysis is not without its problems.
Egan (2006: 75–76) outlines themost important ones. Underpinning bootstrap
analysis is the assumption that a largenumber of characters havebeen sampled
randomly from a population of uncorrelated characters that have the same dis-
tributions. The use of the bootstrap above violates these assumptions (see fur-
ther Sanderson 1989: 115–16). First, the character datawas not chosen randomly.
It was in fact heavily curated. Second, it is far from clear that the character data
is independent and identically distributed (i.i.d.). At this point, we simply do
not know that extent to which values of one character may have influenced
those of another.
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7 Distance-basedmethods

In this section, I introduce two distance-basedmethods for phylogenetic infer-
ence (Sneath & Sokal 1973, Aldenderfer & Blashfield 1984, Van de Peer 2009,
Everitt et al. 2011). The crucial distinction between optimality methods (such
as maximum parsimony and maximum likelihood) and distance-based meth-
ods is that the latter infer phylogenies by applying an algorithm to a distance
matrix. The distance matrix is a measure of the dissimilarity between each
taxon in the dataset, which is created from the original data.

7.1 Hamming distance
Hamming distance (also known as degree of divergence and pair-
wise distance) is a simple measure of dissimilarity: it is the number of char-
acters for which two languages differ (i.e., exhibit non-identical character val-
ues) divided by the total number of characters (Graur & Li 2000: 74, Baum &
Smith 2013: 232–34). If two languages differ at 5 out of 20 sites then they have
a Hamming distance of 0.25.
Hamming distance is calculated with the function dist.hamming() from

the phangorn package:27

This distance matrix will be the input to the UPGMA and NJ algorithms pre-
sented in the subsequent sections.

7.2 Unweighted Pair GroupMethod with ArithmeticMean (UPGMA)
The UPGMA algorithm, created by Sokal &Michener (1958), works as follows.
(Swofford et al. 1996: 488–90, Johnson 2008: 182–214, Levshina 2015: 310–11 and
Kassambara 2017 provide instruction for implementing distance-based meth-
ods in R; for a UPGMA analysis of linguistic data, see Delmestri & Cristianini
2010.) The two languages in a distance matrix that are least dissimilar (e.g.,
have the lowest hamming distance) are paired together under a node. The
lengths of the branches from the tips to the node are then calculated. Once

27 The Hamming dissimilarity measure is crude, because it assumes that the pairwise dis-
tance between any two languages is tantamount to the amount of change that they have
undergone. More sophisticated measures of calculating the distance between two lan-
guages are based on explicit evolutionary models, e.g., maximum likelihood distance (see
Yang 2014: 17–22, 27–33). One can calculate maximum likelihood distance in phangorn
with the function dist.ml().
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this first cluster with its two languages has been created, the algorithm returns
to the distance matrix and replaces the row and column in which these two
languages appeared with their cluster. The distance between this cluster and
the remaining taxa in the distancematrix is then calculated. Once the distance
matrix has been updated with the new distances, the process is repeated. That
is, the two least dissimilar taxa are paired together in a cluster, their branch
lengths are calculated, and the distances in the matrix are updated. The algo-
rithm concludes once there is only one item remaining in the distance matrix.
The most salient property of the UPGMA algorithm is that it assumes an

equal rate of change across all branches. As a result, UPGMA trees are ultra-
metric, which means that the distance from the root to each tip is equal.
Since the UPGMAalgorithm creates rooted trees with branch lengths, infer-

ring aUPGMA tree is as simple as calling the functionupgma()on the distance
matrix:

To view the distance matrix, type screened.hamming.upgma into the con-
sole. Thematrix is large, so I do not present it here. The object screened.ham-
ming.upgma will be the input to the UPGMA and NJ algorithms presented
below.
Bootstrap analysis of the UPGMA tree based on Hamming distances is car-

ried out as follows:
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Here is the UPGMA tree annotated with bootstrap scores:

figure 15 UPGMA tree (Hamming distance)

This tree suffers from a number of glaring problems (cf. Barbançon et al. 2013:
143, 161, 163–64). First, it fails to establish an immediate common ancestor for
Old Persian, Avestan, andVedic Sanskrit. Oscan andUmbrian should have been
paired with Latin, which instead forms a clade with Greek. It is also peculiar
that Old Church Slavic diverges after Old Prussian but before Lithuanian and
Latvian.
The consistency and retention indices for the UPGMA tree are as follows:
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The retention indices are lower on the UPGMA tree compared to the maxi-
mum parsimony trees presented in section 5.6 above, which means that there
is more homoplasy on this tree.

7.2.1 Cluster validation
The creation of a phylogenetic tree from a distance matrix inevitably involves
the loss of information. The amount of information lost varies according to
the clustering algorithm. To evaluate the differences between the pairwise
distances of the distance matrix and the distances between taxa in the tree,
we rely on measures of cophenetic distance (Kassambara 2017: 73). The func-
tion cophenetic.phylo() in ape computes the pairwise distances between
the pairs of tips from a phylogenetic tree using its branch lengths (see fur-
ther Paradis 2012: 125–33). We then run cor() on both distance vectors to
assess the correlation between the original distances and the cophenetic dis-
tance:

The closer the correlation coefficient is to 1, the more accurately the cluster-
ing solution reflects the data. Values above 0.75 are considered good in some
fields. It is not yet clear what constitutes a reliable value for linguistic phyloge-
netics.

7.2.2 Issues
The central weakness of UPGMA is that its results will be wide of the mark if
the rates of change are not equal among the languages in the dataset (Felsen-
stein 2004: 165). As the tree above makes clear, UPGMA does not yield good
results for our Indo-European data. (Nakhleh et al. 2005: 182, 185–86 and Bar-
bançon et al. 2013: 166 came to a similar conclusion.) UPGMAhas been heavily
criticized for its assumption of ultrametricity, but it is crucial to understand
that the nature of the tree that the alogorithm produces is fundamentally dif-
ferent from that of either parsimony or likelihood methods. UPGMA tells us
how similar pairs of languages are at the synchronic stages represented by the
data. Given that the Indo-European phylogeny is not ultrametric, it may make
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more sense to interpret the UPGMA tree above not as amodel of linguistic his-
tory, but rather as a model of similarity. Viewed thus, it actually makes a fair
amount of sense that Latin and Greek form a clade. It is less clear how one
motivates the position of Old Persian, however.

7.3 Neighbor Joining
The neighbor-joining algorithm (Saitou&Nei 1987) is similar in spirit to that of
UPGMA in that it estimates a phylogeny from a distance matrix. In its details,
however, the algorithmworks quite differently. For one, it is a divisive algorithm
that begins with a star tree (Swofford et al. 1996: 488, Yang 2014: 92). Nodes in
the tree are constructed not from the distance matrix itself, but rather from a
modified distance matrix. This distance matrix adjusts the distance between
each pair of taxa on the basis of their average divergence from all other nodes
(Swofford et al. 1996: 488). Neighbor joining is guaranteed to recover the true
tree if the distancematrix happens to be an exact reflection of the tree (Felsen-
stein 2004: 166). In contrast to UPGMA, Neighbor joining does not assume that
the tree is ultrametric, that is, the taxa arenot assumed tohave all diverged to an
equal extent (Baum & Smith 2013: 234–36, Swofford et al. 1996: 488). Neighbor
joining is often used to infer a start tree for other methods, such as Maximum
Likelihood Estimation (Felsenstein 2004: 169, Swofford et al. 1996: 490; MLE
is presented in section 8 below), not least because it can be used with up to
hundreds of taxa (Felsenstein 2004: 166).
We infer a neighbor-joining tree from our distance matrix with the com-

mand NJ():

Although the neighbor-joining algorithm produces trees with branch lengths,
the trees have to be rooted, which is why I called the root() function in the
above snippet. The following code then performs the bootstrap analysis:
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The neighbor-joining tree with annotated bootstrap scores looks as follows:

figure 16 NJ tree (Hamming distance)

It is interesting that the neighbor-joining algorithm stumbles with the position
of Latin, just as theUPGMAalgorithmdid.This time, however, Latin is assigned
to a clade with Greco-Armenian. All taxa are otherwise assigned to the correct
clades. Branch lengths reflect the amount of lingusitic change on a particular
lineage, so according to this tree Old Persian is the most innovative of the lan-
guages in the dataset, and Hittite is the most conservative.
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Here are the measures of homoplasy for the NJ tree:

The consistency and retention indices suggest low levels of homoplasy on the
tree. The retention index is noticeably higher for the NJ tree compared to the
UPGMA tree.
Finally, the following code carries out cluster validation:

The correlationbetween thedistancematrix and thebranch lengths of thephy-
logenetic tree is high.

7.3.1 Issues
One of the challenges of distance-based algorithms is overabundance. There
are not only many different ways of calculating the distance between lan-
guages, but also many different ways of constructing a phylogenetic tree from
distance matrices (Everitt et al. 2011: 80–83). Which methods are best for lin-
guistic phylogenetics is not always so clear. All that seems certain at this point
is that algorithms that assume ultrametricity seem implausible for linguistic
datasets. Under distance-based methods, symplesiomorphies (shared archa-
isms) are not distinguished from synapomorphies (shared innovations): they
both increase the proximity of taxa (Bowern 2017: 424).

8 Maximum likelihood

With the publication of the seminal Felsenstein (1981), phylogenetic inference
takes a statistical turn (Oaks 2015: 1122; for the earlier history of maximum
likelihood, see Huelsenbeck & Crandall 1997: 441). Phylogenetic estimation
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begins to be viewed as a problem of statistical inference whereby characters
(or molecular sequences) evolve along the paths of a phylogeny via proba-
bilistic processes (Yang 2014: vii, Warnow 2018: 145). The central question in
maximum likelihoodestimation is the following:What tree (andmodel of char-
acter change) maximizes the probability of the observed data? The probability
of an observed dataset given a particular tree andmodel of evolution is known
as the likelihood, a statistical concept of fundamental importance (see, e.g.,
Pawitan 2001). Likemaximumparsimony, phylogenetic inference inmaximum
likelihood relies on an optimality criterion (for a comparison of maximum like-
lihood andmaximumparsimony, see Lewis 1998): the best estimate of the phy-
logeny is the one that maximizes the likelihood of the observed data (Felsen-
stein 1981, Baum & Smith 2013: 240).

8.1 Likelihood andmaximum likelihood
Before explicating maximum likelihood in a phylogenetic context, I first illus-
trate the concept of likelihood with the well-worn but still useful example of
fair and biased coins. The probability that a fair coin will land on heads (or
tails) is 0.5. In other words, given that the coin is fair, the probability of obtain-
ing heads is equal to the probability of obtaining tails. So if we toss a coin one
hundred times, we expect approximately fifty heads. If one hundred people
each toss a coin one hundred times, we expect a distribution such as the fol-
lowing:

figure 17 Distribution of heads for a fair coin
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Nearly all participants get between forty and sixty heads,with results around
fifty being the most common.
Now imagine that we ask one hundred people to each flip a coin one hun-

dred times, but end up with starkly different results:

figure 18 Distribution of heads for a biased coin

Most people now get between seventy and eighty heads, a far cry from the pre-
vious distribution. It is hard to imagine that the coins would so frequently land
on heads if the probability of doing so were really 0.5. What then is the prob-
ability that this coin will land on heads? In other words, what probability of
obtaining heads makes the observed data abovemost likely? This question lies
at the heart of maximum likelihood phylogenetic estimation.Wewant to know
the probability of the observed data given a particular model of the coin, i.e., a
particular probabilty of obtaining heads. The parameter value that makes the
observed number of heads the most likely will then be our optimal model.
We calculate the likelihood of the biased distribution above according to dif-

ferent parameter values as follows (I omit the details of this calculation in the
interest of simplifying the discussion):

## [1] 0
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## [1] 1.298017e-235

## [1] 3.692512e-128

## [1] 2.927659e-266

These numbers are extraordinaly small (in fact, the first number is not actually
0, but it is so infinitesimal that R is representing it as 0). For this reason, it is
customary to work with the log-likelihood, that is, the natural logarithm of the
likelihood values:

## [1] –1636.701

## [1] –540.8467

## [1] –293.4246

## [1] –611.4134

These transformed probabilities are known as log-likelihood scores. Values
closer to zero represent higher log-likelihoods.28 Working with log-likelihoods
makes it easier to see that the likelihood increases between 0.5 and 0.75 but

28 Since probabilities lie between 0 and 1, log-likelihood scores have a maximum of 0, but in
practice will always be negative.
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then drops again with 0.85. This suggests that the maximum likelihood esti-
mate of the biased coin is around 0.75.
The following plot presents the log-likelihoods for a range of parameter val-

ues:

figure 19 Maximum likelihood estimate

The graph plots log-likelihood values as a function of probabilities. The log-
likelihood reaches its maximum value (–293) when the probability of heads is
0.75. The maximum likelihood estimate of the probability of obtaining heads
with our biased coin is therefore 0.75. In the next section, we apply this reason-
ing to phylogenetic inference.

8.2 Maximum likelihood in a phylogenetic context
As noted above, maximum likelihood phylogenetic estimation identifies the
best tree(s) on the basis of an optimality criterion (for general introductions,
see Huelsenbeck & Crandall 1997, Felsenstein 2004: 248–74, Schmidt & von
Haeseler 2009, Huson, Rupp, & Scornavacca 2010: 40–43, Baum & Smith 2013:
238–47, Yang 2014: 102–51).29 The optimal tree (or trees) is the one that makes
the observed data most likely.

29 For a range of studies, both linguistic and cultural, that rely on likelihood methods, see
(Pagel 2017: 153). Pagel (2000) is an application of maximum likelihood methods to Indo-
European specifically.
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To illustrate the use of maximum likelihood in a phylogenetic context, imag-
ine a binary linguistic character X with values 0 and 1 in three languages. Lan-
guage A exhibits the value 0; language B, the value 1; and language C, the value
0. Altogether we therefore have the sequence 010. We begin by calculating the
probability of this sequence given the following tree (in order to keep this
example simple, I stipulate ancestral states and only take account of tree topol-
ogy and not other parameters such as branch length):

figure 20 Hypothetical tree 1

To calculate the probabilty of the sequence 010 at the tips, we can use the stan-
dard tools of probability theory, which come with the following assumptions
(Felsenstein 2004: 251):

(4) Assumptions
a. The diachrony of different sites (on a given tree) is independent.
b. The diachrony of different lineages is independent.

Assumption (4a)means that the probability of the value of one character is not
affected by the value of another character. (Our toy example involves only one
character, so this assumption will not play a role here, but it is an assumption
of the maximum likelihood estimates below in sections 8.5 and 8.6.) Assump-
tion (4b) says that the way in which a character develops in one branch is not
dependent on the way in which it develops in another branch.
This latter assumption in particular enables us to calculate the probability

of the observed sequence 010 given the above tree as a product of probabilities:

(5) Calculating likelihood
P(XProto-ABC = 1) · P(XProto-AB = 1 | XProto-ABC = 1) · P(XA = 0 | XProto-AB = 1) · P(XB
= 1 | XProto-AB = 1) · P(XC = 0 | XProto-ABC = 1)
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P( ) is shorthand for “theprobability of.” SoP(XProto-ABC= 1) refers to theproba-
bility that our character Xhas the value 1 at the root node Proto-ABC. P(XProto-AB
= 1 | XProto-ABC = 1) denotes a conditional probability, that is, the probability that
our character has the value 1 in Proto-AB given that it was 1 in Proto-ABC. (The
information to the right of the pipe ‘|’ is given.) In essence, whatwe are doing in
example (5) is calculating the probability of a series of diachronic events from
a particular starting point, namely the value 1 in Proto-ABC.

8.3 Transitionmodels
To compute the probabilities in example (5) we need a transition model.
Transition models in biology are probabilistic models of trait evolution (in the
context of DNA sequences, they are known as substitution models). The
incorporation of such models is a signal feature of maximum likelihood esti-
mation (see further Felsenstein 2004: 156–59, 196–229, Ewens & Grant 2005:
475–95, Nichols &Warnow 2008: 766–69, Baum& Smith 2013: 217–31,Warnow
2018: 146–52). It is possible to encode a range of properties of linguistic change
in amodel, such as variable base frequencies, variable rates of change, and tran-
sition probabilities. Here I focus on two aspects, base frequency and transition
probability. For discrete character data such as we have in our dataset, a com-
mon trait model is the Mk model (Lewis 2001), which provides formulas for
calculating transition probabilities. This is the trait model used below in sec-
tion 8.5.
The calculation in example (5) requires the probability of the value 1 at the

root node. This is known as the base frequency. One way to calculate the
probability of each of the character states is to divide by the total possible num-
ber of character values. Since there are only two possible values (0 and 1), the
probability of each would be 0.5. Alternatively, we could estimate this proba-
bility from the relative frequency of the observed data. In our sequence 010,
the relative frequency of the value 0 is 2/3, while that of the value 1 is 1/3. In
computing the likelihood of the sequence 010 below, I adopt the first method
and assign a uniform probability to the values 0 and 1, that is, 0.5.
We need in addition amodel that specifies the probability of changing from

0 to 1 and from 1 to 0, as well as the probability of successful transmission from
one generation to the next (that is, the probability that the character will not
change). In the interest of pedagogical expedience, I stipulate the following
transition probabilities:

(6) Transition probabilities
a. The probability of a change of state
P(1 | 0) = 0.2
P(0 | 1) = 0.2
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b. The probability of no change of state
P(0 | 0) = 0.8
P(1 | 1) = 0.8

Example (6a) presents two conditional probabilities with a change of state,
namely 0 > 1 and 1 > 0. Since language transmission is typically successful and
change often slow, I set the probability at 0.2. The probability of no change (i.e.,
1 > 1 or 0 > 0) in example (6b) is accordingly 0.8. P(1 | 0) andP(1 | 1) add up to one,
as do P(0 | 0) and P(0 | 1), because these two scenarios exhaust the possibility
space. That is, given a character value 1, it is certain that it will either change to
0 or remain 1.

8.4 Computing the likelihood
Now that we have base frequencies and transition probabilities, we can com-
pute the probabilty of the sequence 010, given the tree above, which I repeat
here for convenience:

figure 21 Hypothetical tree 1

According to this tree, we would have the following change and non-change
events events:

(7) Change events
a. Proto-ABC 1 > C 0
b. Proto-AB 1 > A 0

(8) Non-change events
a. Proto-ABC 1 > Proto-AB 1
b. Proto-AB 1 > B 1
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Given our earlier assumption of independence, the probability can be cal-
culated as the following product:

(9) P(XProto-ABC = 1) · P(XProto-AB = 1 | XProto-ABC = 1) · P(XA = 0 | XProto-AB = 1) · P(XB
= 1 | XProto-AB = 1) · P(XC = 0 | XProto-ABC = 1) = 0.5 · 0.8 · 0.2 · 0.8 · 0.2

This product yields a likelihood of 0.0128 and a log-likelihood of –4.36.
Now that we have computed the likelihood of our character sequence given

aparticular tree,we cannowcompare this likelihood score against that of other
trees, such as the following, where languages A and C form a clade:

figure 22 Hypothetical tree 2

We observe the same sequence data and now want to know whether this tree
is a better fit for that data. To calculate the probability of our data on the above
tree, we again calculate the probability of the character value at each point in
the tree. According to this tree, we would have the following change and non-
change events:

(10) Change events
Proto-ABC 1 > Proto-AC 0

(11) Non-change events
a. Proto-ABC 1 > B 1
b. Proto-AC 0 > A 0
c. Proto-AC 0 > C 0

We again calculate the product:

(12) P(XProto-ABC = 1) · P(XProto-AC = 0 | XProto-ABC = 1) · P(XA = 0 | XProto-AC = 0) · P(C
= 0 | XProto-AC = 0) · P(XB = 1 | XProto-ABC = 1) = 0.5 · 0.2 · 0.8 · 0.8 · 0.8
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This product yields a likelihood of 0.0512 and a log-likelihood of –2.97. The
probability of the character data is therefore higher given hypothetical tree two
compared to hypothetical tree one. As the calculations reveal, this is because
tree two involves fewer change events that lower the likelihood. Were we to
continue trying different topologies, we would eventually identify the tree that
makes the data most likely.
This is a highly simplified illustration of maximum likelihood estimation. In

practice, maximum likelihood computation ismuchmore complex, for it takes
into account factors such as branch length and rate variation among characters.
In addition, we usually do not know the ancestral states of characters, so we
have to calculate the probability of the observed data across alternative ances-
tral state scenarios. Nevertheless, the toy example above provides a glimpse of
the basic mechanics of the method.

8.5 Calculate likelihood
Returning to our Indo-European dataset, we calculate the log-likelihood of the
observed data for a given tree with the function pml(). The following log-
likehood values are based on the Mk model:

We have not actually inferred amaximum likelihood tree at this point.We have
simply calculated the log-likelihood of the data given three different trees. The
lowest log-likelihood score is –18386, which means that the observed data are
most likely given the NJ tree inferred in section 7.3 and the Mk model. It is
worth emphasizing that these likelihood scores do not refer to the probability
of a particular tree. They denote the probability of the data, given that tree and
its parameters.

Downloaded from Brill.com09/18/2020 08:51:58PM
via free access



indo-european phylogenetics with r 55

Indo-European Linguistics (2020) 1–71 | 10.1163/22125892-20201000

8.6 Maximum likelihood estimation
The functionpml() calculates theprobability of thedata given aparticular tree
and transition model. It does not identify the tree that maximizes the prob-
ability of that data, however. To do that, we use the function optim.pml()
in phangorn, which optimizes model parameters (for more on what can be
optimized, type ?optim.pml into the console).30 In the following snippet, I
optimize two parameters, tree topology and branch length (to conserve space,
I only present the code for the maximum parsimony start tree). Note that
optim.pml() requires an initial pml object:31

The argument optEdge=TRUE optimizes branch lengths, while optNni=TRUE
optimizes the topology. The snippet above adjusts the topology and branch
length of the tree until it finds one that yields the highest log-likelihood.32
Our MLE trees with optimized topology and branch lengths look as follows

(in the interest of space, I do not present the code for the plots for these and
subsequent trees):

30 The packages diversitree (FitzJohn 2012) and CorHMM (Beaulieu, Oliver, & O’Meara
2017) offer further tools for maximum likelihood phylogenetic inference.

31 Other maximum likelihood estimation software will carry out a search for the maximum
likelihood tree, such as IQ tree (http://iqtree.cibiv.univie.ac.at) or RAxML (Stamatakis
2014).

32 With larger trees, NNI rearrangements can get stuck in local optima (see section 5.5
above). To circumvent this issue, the argument rearrangement = “stochastic”makes
stochastic NNI permutations to the tree that then get optimized. Stochastic rearrange-
ment performs amore thorough search for the optimal tree and consequently takes longer
to perform.

Downloaded from Brill.com09/18/2020 08:51:58PM
via free access

http://iqtree.cibiv.univie.ac.at


56 goldstein

10.1163/22125892-20201000 | Indo-European Linguistics (2020) 1–71

figure 23 MLE tree with bootstrap scores (Ratchet start tree)
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figure 24 MLE tree with bootstrap scores (UPGMA start tree)
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figure 25 MLE tree with bootstrap scores (NJ start tree)

Although we started from three different start trees, maximum likelihood esti-
mation converges on the same topology.The topology of the above trees is close
towhatweobservedwith themaximumparsimony trees in section 5 above. It is
worthnoting thatmaximum likelihood estimation yieldsmore extremebranch
lengths. In all three of the above trees, Oscan, Umbrian, andOld Persian are the
most innovative archaic Indo-European languages (as revealed by the length of
their branches). One clear flaw with this tree is that Anatolian is presented as
almost tantamount to PIE since it is so close to the root.
In inferring the above trees, I did not take full advantage of the capabili-

ties of maximum likehood estimation. For instance, the model used to infer
the trees does not contain a parameter for variation in the rates of change. It
is well known that rates of linguistic change vary both across and within the
components of language, i.e., phonology, morphology, syntax, and the lexicon
(e.g., Dixon 1997: 9 n. 1, Nettle 1999b, Gray 2005, Pagel & Meade 2006, Pagel,
Atkinson, & Meade 2007, Greenhill et al. 2017). It is possible to incorporate
such variation into a model (see, e.g., Yang 2014: 114–20). Phylogenetic estima-
tion based on such a model should accordingly become more accurate given
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that we are providing the model with more information about the historical
processes that give rise to the observable data. There thus remains a lot for his-
torical linguists to explore with likelihood methods.

8.7 Issues
One general criticism that has been leveled at maximum likelihood methods
is that they do not answer the question that historical linguists are most inter-
ested in. Likelihood assesses the probability of the data given a phylogeny and
its parameters, but what historical linguists want to know is the probability of a
particular phylogeny and a set of parameters given the observed data. Bayesian
inference is designed to answer precisely this type of question, since it offers
a probability distribution over phylogenetic trees given the observed data (see
Drummond & Bouckaert 2015: 19–20 for a comparison between Bayesian and
maximum likelihood phylogenetic inference). This is one reason why Bayesian
methods have become so prominent in linguistic phylogenetics.

9 Envoi

To sum up, distance-based methods do not perform as well as parsimony or
maximum likelihood methods on our dataset. The potential of the latter set
of methods remains to be explored. The particulars of the methods aside, it
should now be clear that the phylogenies that we infer depend crucially on the
assumptions of the method and the data. We need to infer phylogenies from a
variety of datasets to determine whether the results obtained are an artifact of
that particular dataset or reflect a true phylogenetic signal. This need has long
been perceived in the biological sciences:

Fisher’s essential pointwas that the ability to investigatemeaningful pop-
ulation differences from data such as human blood-group frequencies
depends on the accumulation of information from a variety of blood-
group systems, no one of which will reveal the phylogenetic structure by
itself. The same is true today when the wealth of genetic material avail-
able for analysis in all species is effectively boundless.

Edwards (2009: 6)

For all the promise that advances in computational phylogenetics hold, at the
endof the daywhatmattersmost is the quality (andquantity) of the input data.
On this front, one area that still awaits closer investigation is morphosyntax.33

33 The following remark of Brugmann (1884: 248) remains true today: “Ich zweifle nicht
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Bowern (2017: 421), in her review of Pereltsvaig & Lewis (2015), writes that
it is a great time to be a historical linguist. She cites the number of new tools
that we now have to investigate big questions of language change. I concur,
and want to stress that estimation of tree topology is only a small part of
whatmakes the advent of computational phylogenetics so exciting, since these
methods enable Indo-Europeanists to pursue questions that were previously
out of reach.
The data and code for this tutorial are available at http://doi.org/10.5281/

zenodo.3417299.
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